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Introduction

Goal: effectively fuse
information from multiple
modalities to obtain

semantic information
Contributions:

- information from multiple
scales considered

- late fusion used to maximally
leverage training data

- post-processing CRF used

- validated on KITTI data [1] with augmented labels; performance
increase obtained over state-of-the-art method [3]
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Segmentation

- Multiple segmentations to
consider cues from varying scales
of information in classification

- Image: hierarchical
segmentation [2] extracted

- Point cloud: 0.5 m supervoxels
and connected component
segmentation

Feature extraction

- Inference performed on low
level segments

- Low level segments associated
with high-level segments

- Feature vectors of low level
segments augmented with
associated high level segment

- High dimensional features
extracted for low level segments

Features Extracted

Type Name Dim | Low | High

Area 1 v v

Type Name Dim | Low | High Equivalent Diameter I v v

Length proxy - Ay 1 v v Size/Shape Major/minor axes 2 v v

Size Area proxy - v/ A1 A2 1 v v Orientation I v v

Volume proxy - VA1A2Aa | v v Eccentricity 1 v v

Scatter - Ag /A 1 v v Position (z,y) - min, mean, max 6 v v

Shape Planarity - (A2 — Az)/A 1 v v superpixel mask (8x8) 64 v v

Linearity - (A1 — A2)/A I v v Color rgb+lab (mean, std) 6 v v

Position Z — Zgndplane - MiN, Mean, max 3 v v rgb+lab (histogram) 48 v v
. : Verticalness - vy, 1 v v High-dim SIFT BoW 400 v
Orientation o \/ 2 | / v contextual rgh+lab (mean, std) 6 v
_ _ . 1z Contextual | contextual rgb+lab (histogram) 48 v
High-dim Spin image BoW 1000 v contextual SIET Bow 00 7

Point cloud supervoxel features Image superpixel features

Classification & Fusion

- Random Forest (RF) classifier
used for each modality separately
- Weights for samples of rare
classes artificially boosted

- For overlapping region, fusion
classifier evaluated on output
pmfs of unimodality classifications
- Pmfs serve as compact and
descriptive mid-level features

- Post-processing pairwise CRF

Fused+CRF

Qualitative Results

Ours

3]

Late-fusion Results

- Performance increases. On overlapping regions:
- Pixel-wise: 68.1% pc only, 77.8% img only, 84.9% fused
- Class-wise: 41.4% pc only, 52.1% img only, 65.2% fused

- Examples

- sidewalk more likely to be classified correctly vs road only after fusion

- modes of failure can be found during fusion e.g. looks building-like in point
cloud and road-like in image =» actually a fence
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Performance on overlapping region

Conclusions gob  class | bidg  sky  rosd  veg

Cadena er al. [3] 84.1%  524% | 925% 95.7% 925%  86.3%

- Dataset: 252 images (140 training, Ours Gimage only) | 835% 533% | 815% 025% 045% 025%

Ours (late fused) 88.0%  64.8% | 93.5%  925%  O91.2%  92.0%

112 testing) from 8 Seq uences Ours (CRF) 3'!_.3‘3 65.4% | 95.0%  926% 9267 9287
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-m u Itisca Ie I nfo rm atIO N p rovid es Cadena et al. [3] 51.5%  67.9%  28.6% 4.0% 2.5% 2.3%

Ours (image only) | 34.5% T1.4% 4005 3.6% 4.1% 3.3%
Ours (late fused) 60.7% T6.5% 63 7% 10,07 1667 42 240

Strong cues for classifier Ours (CRF) 73.3%  787%  65.1%  73% 138G 43.2%
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- Extend algorithm to additional
modalities, e.g. infrared and hyperspectral, and validate
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